
	

Face	Recognition	Vendor	Test	
FRVT	2018	

	

	
	

Performance	of	Automated	Face	Identification	Algorithms	
Concept,	Evaluation	Plan	and	API	

VERSION	0.5	

THIS	DOCUMENT	IS	OPEN	FOR	COMMENTS:	EMAIL	TO	FRVT@NIST.GOV	

	
	

Patrick	Grother	
Mei	Ngan	

Kayee	Hanaoka	
Information	Access	Division		

Information	Technology	Laboratory	
	

	
	
	
	

October	26,	2017	

	
	
	
	
	
	

	 	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	2	of	18	

		

Table	of	Contents	1	
1.	 FRVT	2018	...	3	2	

1.1.	 Scope	..	3	3	
1.2.	 Audience	...	3	4	
1.3.	 Schedule	...	3	5	
1.4.	 Reporting	..	3	6	
1.5.	 Version	Control	...	3	7	
1.6.	 Background	...	4	8	
1.7.	 FRVT	2018:	Changes	from	prior	evaluations	...	4	9	
1.8.	 Relation	to	the	1:1	FRVT	evaluation	...	4	10	
1.9.	 Core	accuracy	metrics	...	4	11	
1.10.	 Application	relevance	...	5	12	

2.	 Rules	for	participation	..	5	13	
2.1.	 Participation	agreement	...	5	14	
2.2.	 Validation	..	5	15	
2.3.	 Hardware	specification	...	5	16	
2.4.	 Operating	system,	compilation,	and	linking	environment	..	6	17	
2.5.	 Software	and	documentation	...	6	18	
2.6.	 Runtime	behavior	...	7	19	
2.7.	 Time	limits	..	8	20	
2.8.	 Template	size	limits	..	8	21	

3.	 Data	structures	supporting	the	API	..	9	22	
3.1.	 Requirement	...	9	23	
3.2.	 File	formats	and	data	structures	...	9	24	

4.	 API	specification	...	13	25	
4.1.	 Namespace	...	13	26	
4.2.	 Overview	...	13	27	
4.3.	 API	...	15	28	

	29	
List	of	Tables	30	

Table	1	–	Schedule	and	allowed	number	of	submissions	...	3	31	
Table	3	–	Processing	time	limits	in	seconds,	per	640	x	480	color	image,	on	a	single	CPU	...	8	32	
Table	4	–	Structure	for	a	single	image	..	9	33	
Table	5	–	Labels	describing	categories	of	Images	...	9	34	
Table	6	–	Structure	for	a	set	of	images	from	a	single	person	...	9	35	
Table	7	–	Structure	for	a	pair	of	eye	coordinates	...	10	36	
Table	8	–	Labels	describing	template	role	..	10	37	
Table	9	–	Enrollment	dataset	template	manifest	...	11	38	
Table	10	–	Labels	describing	gallery	composition	..	12	39	
Table	11	–	Structure	for	a	candidate	..	12	40	
Table	12	–	Enumeration	of	return	codes	..	12	41	
Table	13	–	ReturnStatus	structure	...	13	42	
Table	16	–	Procedural	overview	of	the	1:N	test	...	13	43	
Table	17	–	Template	creation	initialization	..	15	44	
Table	19	–	Enrollment	finalization	..	16	45	
Table	21	–	Identification	search	...	17	46	
Table	23	–	Insertion	of	template	into	a	gallery	..	18	47	
Table	24	–	Removal	of	template	from	a	gallery	...	18	48	
	49	

50	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	3	of	18	

		

1. FRVT	2018	51	

1.1. Scope	52	
This	document	establishes	a	concept	of	operations	and	an	application	programming	interface	(API)	for	evaluation	of	one-53	
to-many	face	recognition	algorithms	applied	to	faces	appearing	in	2D	still	photographs.	The	primary	focus	of	the	test	is	54	
cooperative	portrait	images,	e.g.	mugshots1.		The	test	will	include	also	search	of	non-cooperative	images.	The	API	55	
communicates	the	type	of	image	to	the	algorithm.	56	

1.2. Audience	57	

Participation	is	open	to	any	organization	worldwide,	primarily	researchers	and	developers	of	FR	algorithms.	While	NIST	58	
intends	to	evaluate	stable	technologies	that	could	be	readily	made	operational,	the	test	is	also	open	to	experimental,	59	
prototype	and	other	technologies.		All	algorithms	must	be	submitted	as	implementations	of	the	API	defined	in	this	60	
document.	There	is	no	charge	for	participation.	61	

1.3. Schedule	62	
In	consultation	with	US	Government	collaborators,	NIST	will	execute	the	FRVT	2018	on	the	schedule	given	in	Table	1.	Note	63	
that	NIST	will	report	results	publicly	at	the	end	of	Phases	2	and	3.	The	end	of	Phase	2	corresponds	closely	to	the	end	of	64	
the	financial	year	and	results	from	the	FRVT	are	required	by	that	date.	65	

Developers	may	submit	the	number	of	algorithms	identified	in	the	rightmost	column.	66	

Table	1	–	Schedule	and	allowed	number	of	submissions	67	
Phase	 Date	 Milestone	 Maximum	number	of	

implementations	
API	
Development	

2017-10-26	 Draft	evaluation	plan	available	for	public	comments	 	
2017-11-16	 Final	evaluation	plan	published	 	

Phase	1	
	

2018-01-22	 Participation	starts:	Algorithms	may	be	sent	to	NIST	 	
2018-02-16	 Last	day	for	submission	of	algorithms	to	Phase	1	 3	
2018-05-23	 Interim	results	released	 	

Phase	2	
	

2018-06-21	 Last	day	for	submission	of	algorithms	to	Phase	2	 2	
2018-09-20	 Results	released	 	

Phase	3	
	

2018-10-19	 Last	day	for	submission	of	algorithms	to	Phase	3	 2	
2018-12-19	 Release	of	final	public	report	 	

1.4. Reporting	68	
At	the	conclusion	of	Phase	1,	NIST	will	provide	results	for	all	algorithms	to	all	developers,	and	to	US	Government	partners.	69	

At	the	conclusion	of	Phase	2,	NIST	will	publish	results	for	all	algorithms	on	its	website.		70	

At	the	conclusion	of	Phase	3,	NIST	will	publish	an	Interagency	Report	summarizing	the	entire	FRVT	1:N.	71	

Important:		This	is	an	open	test	in	which	NIST	will	identify	the	algorithm	and	the	developing	organization.	Algorithm	72	
results	will	be	attributed	to	the	developer.	Results	will	be	machine	generated	(i.e.	scripted)	and	will	include	timing,	73	
accuracy	and	other	performance	results.	These	will	be	posted	alongside	results	from	other	implementations.	74	

NIST	may	additionally	report	results	in	workshops,	conferences,	conference	papers	and	presentations,	journal	articles	and	75	
technical	reports.	76	

1.5. Version	Control	77	
Developers	must	submit	a	version.txt	file	in	the	doc/	folder	that	accompanies	their	algorithm	–	see	Section	2.5.3.	The	78	
string	in	this	file	should	allow	the	developer	to	associate	results	that	appear	in	NIST	reports	with	the	submitted	algorithm.		79	
																																																																				
1	The	MEDS	database	includes	sample	mugshots.		

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	4	of	18	

		

This	is	intended	to	allow	end-users	to	obtain	productized	versions	of	the	prototypes	submitted	to	NIST.		NIST	will	publish	80	
the	contents	of	version.txt.		NIST	has	previously	published	MD5	hashes	of	the	core	libraries	for	this	purpose.	81	

1.6. Background	82	
NIST	has	conducted	evaluations	of	face	recognition	prototypes	since	the	first	FRVT	in	2000.		Until	2006,	those	trials	83	
simulated	one-to-many	search	accuracy	using	sets	of	one-to-one	comparisons.		In	2010,	in	support	of	the	FBI’s	84	
procurement	of	a	face	search	capability,	NIST	reported	[NISTIR	7709]	accuracy	and	speed	of	end-to-end	one-to-many	85	
search	implementations	with	enrolled	populations	up	to	1.8	million.		Using	updated	algorithms,	that	test	was	repeated	86	
and	extended	in	2013	[NIST	8009].		Those	tests	focused	on	cooperative	portrait	images.		In	late	2017,	NIST	will	publish	the	87	
results	from	the	Face	Recognition	Prize	Challenge	which	assessed	capability	of	contemporary	search	algorithms	on	less	88	
constrained	images	[FRPC	2017].	89	

1.7. FRVT	2018:	Changes	from	prior	evaluations	90	
Given	massive	changes	in	face	recognition	since	the	last	one-to-many	evaluation	in	2013,	NIST	seeks	to	assess	benefits	91	
that	have	accrued	to	the	use	of	those	technologies	with	cooperative	images.	92	

The	following	are	new	aspects:	93	

― Effect	of	increased	population	size:	N	is	expected	to	exceed	107	representing	an	order	of	magnitude	increasing	in	the	94	
number	of	unique	faces.	95	

― Accuracy	with	encounter-based	galleries:	Prior	NIST	evaluations	constructed	galleries	in	which	all	known	images	of	96	
an	enrollee	were	provided	to	the	algorithm	together,	under	a	single	identity.		This	supported	algorithms	which	might	97	
fuse	images	or	templates.		However,	this	subject-based	enrollment	differs	from	that	(minority	of)	operational	98	
deployments	–	encounter-based	applications	-	in	which	multiple	images	of	a	person	are	present	in	a	database	99	
without	any	specified	identity	or	link.		This	test	will	compare	accuracy	for	both	subject-based	and	encounter-based	100	
galleries.		Section	3.2.6	contains	narrative	and	API	support	to	inform	the	algorithm	of	the	gallery	type.	101	

― Expense	of	deletion	and	insertion	functions:		Prior	NIST	evaluations	constructed	a	gallery	which	was	searched	102	
without	any	modification.		This	facilitated	measurement	of	accuracy	and	speed	but	did	not	allow	for	measurement	of	103	
computational	expense	of	adding	or	deleting	elements	from	the	gallery.		These	functions	may	not	be	trivial,	for	104	
example,	if	the	underlying	implementation	uses	fast-search	data	structures.	105	

1.8. Relation	to	the	1:1	FRVT	evaluation	106	
Since	February	2017,	NIST	has	been	running	an	ongoing	evaluation	of	one-to-one	face	verification	algorithms,	FRVT	1:1.	107	
This	allows	any	developer	to	submit	algorithms	at	any	time,	once	every	three	calendar	months,	thereby	better	aligning	108	
development	and	evaluation	schedules.		The	FRVT	1:1	includes	six	different	datasets,	one	of	which	is	mugshots,	similar	to	109	
the	primary	set	proposed	for	inclusion	on	the	FRVT	1:N	defined	herein.		It	may	benefit	developers	to	submit	their	core	1:1	110	
recognition	algorithms	to	the	FRVT	1:1	process	by	the	FRVT	1:N	deadline.		If	such	cpu-based	algorithms	are	submitted	by	111	
January	22,	we	will	publish	results	before	the	1:N	deadline.	112	

Participation	in	the	FRVT	1:1	is	not	required	for	participation	in	FRVT	1:N.	113	

1.9. Core	accuracy	metrics	114	
This	test	will	execute	open-universe	searches.	That	is,	some	proportion	of	searches	will	not	have	an	enrolled	mate.		From	115	
the	candidate	lists	returned	by	algorithms,	NIST	will	compute	and	report	accuracy	metrics,	primarily:	116	

― False	negative	identification	rate	(FNIR)	–	the	proportion	of	mated	searches	which	do	not	yield	a	mate	within	the	top	117	
R	ranks	and	at	or	above	threshold,	T.	118	

― False	positive	identification	rate	(FPIR)	–	the	proportion	of	non-mated	searches	returning	any	(1	or	more)	candidates	119	
at	or	above	a	threshold,	T.	120	

― Selectivity	–	the	number	of	non-mated	candidates	returned	at	or	above	a	threshold,	T.		This	quantity	has	a	value	121	
running	from	0	to	L,	the	number	of	candidates	requested.		It	may	be	fractional,	as	it	is	estimated	as	a	count	divided	by	122	
the	number	of	non-mate	searches.	123	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	5	of	18	

		

These	quantities	are	estimated	from	candidate	lists	produced	by	requesting	the	top	L	most	similar	candidates	to	the	124	
search.		We	do	not	intend	to	execute	searches	requesting	only	those	candidates	above	a	specified	input	threshold.	125	

We	will	report	FNIR	and	FPIR	by	sweeping	the	threshold	over	the	interval	[0,	infinity).	Error	tradeoff	plots	(FNIR	vs.	FPIR,	126	
parametric	on	threshold)	will	be	the	primary	reporting	mechanism.			127	

We	will	report	also	FNIR	by	sweeping	a	rank	R	over	the	interval	[1,	L]	to	produce	(the	complement	of)	the	cumulative	128	
match	characteristic	(CMC).	129	

1.10. Application	relevance	130	
NIST	anticipates	reporting	FNIR	in	two	FPIR	regimes:	131	

― Investigation	mode:	Given	candidate	lists	and	a	threshold	of	zero,	the	CMC	metric	is	relevant	to	investigational	132	
applications	where	human	examiners	will	adjudicate	candidates	in	decreasing	order	of	similarity.		This	is	common	in	133	
law	enforcement	“lead	generation”.	134	

― Identification	mode:	We	will	apply	(high)	thresholds	to	candidate	lists	and	report	FNIR	values	relevant	to	135	
identification	applications	where	human	labor	is	matched	to	the	tolerable	number	of	false	positives	per	unit	time.	136	
This	is	used	in	duplicate	detection	searches	for	credential	issuance	and,	more	so,	in	surveillance	applications.	137	

Given	that	multiple	algorithms	may	be	submitted,	developers	are	encouraged	to	submit	variants	tailored	to	minimize	FNIR	138	
in	the	two	FPIR	regimes,	and	to	explore	the	speed-accuracy	trade	space.	139	

2. Rules	for	participation	140	

2.1. Participation	agreement	141	
A	participant	must	properly	follow,	complete,	and	submit	the	FRVT	Participation	Agreement.		This	must	be	done	once,	142	
either	prior	or	in	conjunction	with	the	very	first	algorithm	submission.		It	is	not	necessary	to	do	this	for	each	submitted	143	
implementation	thereafter.			144	

NOTE	 Organizations	that	have	already	submitted	a	participation	agreement	for	ongoing	FRVT	1:1	do	not	need	to	send	145	
in	a	new	participation	agreement,	as	their	submission	of	a	1:N	algorithm	indicates	they	agree	to	the	same	terms	and	146	
conditions	articulated	in	that	agreement.			147	

NOTE	 If	an	organization	updates	their	cryptographic	signing	key,	they	must	send	a	new	completed	participation	148	
agreement	submission	for	this	evaluation,	with	the	fingerprint	of	their	public	key.	149	

150	

2.2. Validation	151	
All	participants	must	run	their	software	through	the	provided	FRVT	1:N	validation	package	prior	to	submission.		The	152	
validation	package	will	be	made	available	at	https://github.com/usnistgov/frvt.		The	purpose	of	validation	is	to	ensure	153	
consistent	algorithm	output	between	the	participant’s	execution	and	NIST’s	execution.	154	

2.3. Hardware	specification	155	
NIST	intends	to	support	high	performance	by	specifying	the	runtime	hardware	beforehand.	There	are	several	types	of	156	
computer	blades	that	may	be	used	in	the	testing.		Each	machine	has	at	least	192	GB	of	memory.		We	anticipate	that	16	157	
processes	can	be	run	without	time	slicing,	though	NIST	will	handle	all	multiprocessing	work	via	fork()2.		Participant-158	
initiated	multiprocessing	is	not	permitted.	159	

All	implementations	shall	use	64	bit	addressing.		160	

NIST	intends	to	support	highly	optimized	algorithms	by	specifying	the	runtime	hardware.	There	are	several	types	of	161	
computers	that	may	be	used	in	the	testing.		The	following	list	gives	some	details	about	possible	compute	architectures:	162	

																																																																				
2	http://man7.org/linux/man-pages/man2/fork.2.html	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	6	of	18	

		

― Dual	Intel®	Xeon®	X5690	3.47	GHz	CPUs	(6	cores	each)3	163	

― Dual	Intel®	Xeon®	CPU	E5-2630	v4	@	2.2GHz	(10	cores	each)4	164	

― Dual	Intel®	Xeon®	CPU	E5-2680	v4	@	2.4GHz	(14	cores	each)4	165	

This	test	will	not	support	the	use	of	Graphics	Processing	Units	(GPUs).	The	FRVT	1:1	activity,	which	remains	open,	166	
documents	relative	GPU	vs	CPU	speed.	167	

2.4. Operating	system,	compilation,	and	linking	environment	168	

The	operating	system	that	the	submitted	implementations	shall	run	on	will	be	released	as	a	downloadable	file	accessible	169	
from	http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso,	which	is	the	64-bit	version	of	CentOS	170	
7.2	running	Linux	kernel	3.10.0.	171	

For	this	test,	MacOS	and	Windows-compiled	libraries	are	not	permitted.		All	software	must	run	under	CentOS	7.2.	172	

NIST	will	link	the	provided	library	file(s)	to	our	C++	language	test	drivers.		Participants	are	required	to	provide	their	library	173	
in	a	format	that	is	dynamically-linkable	using	the	C++11	compiler,	g++	version	4.8.5.			174	

A	typical	link	line	might	be	175	
g++ -std=c++11 -I. -Wall -m64 -o frvt1N frvt1N.cpp -L. –lfrvt1N_acme_0 176	

The	Standard	C++	library	should	be	used	for	development.		The	prototypes	from	this	document	will	be	written	to	a	file	177	
"frvt1N.h"	which	will	be	included	via	#include.	178	

The	header	files	will	be	made	available	to	implementers	at	https://github.com/usnistgov/frvt.		All	algorithm	submissions	179	
will	be	built	against	the	officially	published	header	files	–	developers	should	not	alter	the	header	files	when	compiling	and	180	
building	their	libraries.	181	

All	compilation	and	testing	will	be	performed	on	x86_64	platforms.		Thus,	participants	are	strongly	advised	to	verify	182	
library-level	compatibility	with	g++	(on	an	equivalent	platform)	prior	to	submitting	their	software	to	NIST	to	avoid	linkage	183	
problems	later	on	(e.g.	symbol	name	and	calling	convention	mismatches,	incorrect	binary	file	formats,	etc.).	184	

2.5. Software	and	documentation	185	

2.5.1. Library	and	platform	requirements	186	
Participants	shall	provide	NIST	with	binary	code	only	(i.e.	no	source	code).		The	implementation	should	be	submitted	in	187	
the	form	of	a	dynamically-linked	library	file.	188	

The	core	library	shall	be	named	according	to	Table	2.		Additional	supplemental	libraries	may	be	submitted	that	support	189	
this	“core”	library	file	(i.e.	the	“core”	library	file	may	have	dependencies	implemented	in	these	other	libraries).		190	
Supplemental	libraries	may	have	any	name,	but	the	“core”	library	must	be	dependent	on	supplemental	libraries	in	order	191	
to	be	linked	correctly.	The	only	library	that	will	be	explicitly	linked	to	the	FRVT	test	driver	is	the	“core”	library.	192	

Intel	Integrated	Performance	Primitives	(IPP)	®	libraries	are	permitted	if	they	are	delivered	as	a	part	of	the	developer-193	
supplied	library	package.	It	is	the	provider’s	responsibility	to	establish	proper	licensing	of	all	libraries.		The	use	of	IPP	194	
libraries	shall	not	prevent	running	on	CPUs	that	do	not	support	IPP.		Please	take	note	that	some	IPP	functions	are	195	
multithreaded	and	threaded	implementations	are	prohibited.	196	

NIST	will	report	the	size	of	the	supplied	libraries.		197	
																																																																				
3	cat	/proc/cpuinfo	returns	fpu	vme	de	pse	tsc	msr	pae	mce	cx8	apic	sep	mtrr	pge	mca	cmov	pat	pse36	clflush	dts	acpi	mmx	fxsr	sse	
sse2	ss	ht	tm	pbe	syscall	nx	pdpe1gb	rdtscp	lm	constant_tsc	arch_perfmon	pebs	bts	rep_good	nopl	xtopology	nonstop_tsc	aperfmperf	
pni	pclmulqdq	dtes64	monitor	ds_cpl	vmx	smx	est	tm2	ssse3	cx16	xtpr	pdcm	pcid	dca	sse4_1	sse4_2	popcnt	aes	lahf_lm	ida	arat	
dtherm	tpr_shadow	vnmi	flexpriority	ept	vpid	
4	cat	/proc/cpuinfo	returns	fpu	vme	de	pse	tsc	msr	pae	mce	cx8	apic	sep	mtrr	pge	mca	cmov	pat	pse36	clflush	dts	acpi	mmx	fxsr	sse	
sse2	ss	ht	tm	pbe	syscall	nx	pdpe1gb	rdtscp	lm	constant_tsc	arch_perfmon	pebs	bts	rep_good	nopl	xtopology	nonstop_tsc	aperfmperf	
eagerfpu	pni	pclmulqdq	dtes64	monitor	ds_cpl	vmx	smx	est	tm2	ssse3	fma	cx16	xtpr	pdcm	pcid	dca	sse4_1	sse4_2	x2apic	movbe	
popcnt	tsc_deadline_timer	aes	xsave	avx	f16c	rdrand	lahf_lm	abm	3dnowprefetch	ida	arat	epb	pln	pts	dtherm	tpr_shadow	vnmi	
flexpriority	ept	vpid	fsgsbase	tsc_adjust	bmi1	hle	avx2	smep	bmi2	erms	invpcid	rtm	cqm	rdseed	adx	smap	xsaveopt	cqm_llc	
cqm_occup_llc	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	7	of	18	

		

Table	2	–	Implementation	library	filename	convention	198	
Form	 libfrvt1N_provider_sequence.ending	
Underscore	
delimited	parts	
of	the	filename	

libfrvt1N	 provider	 sequence	 ending	

Description	 First	part	of	the	
name,	required	to	be	
this.	

Single	word,	non-infringing	
name	of	the	main	provider	
EXAMPLE:		Acme	

A	one	digit	decimal	identifier	
to	start	at	0	and	
incremented	by	1	for	each	
distinct	algorithm	sent	to	
NIST.		Do	not	increment	this	
number	when	submitting	
bug-fixed	updates.	

.so	

Example	 libfrvt1N_acme_0.so	

2.5.2. Configuration	and	developer-defined	data	199	
The	implementation	under	test	may	be	supplied	with	configuration	files	and	supporting	data	files.	These	might	include,	200	
for	example,	model,	calibration	or	background	feature	data.		NIST	will	report	the	size	of	the	supplied	configuration	files.	201	

2.5.3. Submission	folder	hierarchy	202	
Participant	submissions	shall	contain	the	following	folders	at	the	top	level	203	

― lib/	-	contains	all	participant-supplied	software	libraries	204	

― config/	-	contains	all	configuration	and	developer-defined	data	205	

― doc/	-	contains	version.txt,	which	documents	versioning	information	for	the	submitted	software	and	any	other	206	
participant-provided	documentation	regarding	the	submission	207	

― validation/	-	contains	validation	output	208	

2.5.4. Installation	and	usage	209	
The	implementation	shall	be	installable	using	simple	file	copy	methods.	It	shall	not	require	the	use	of	a	separate	210	
installation	program	and	shall	be	executable	on	any	number	of	machines	without	requiring	additional	machine-specific	211	
license	control	procedures	or	activation.		The	implementation	shall	not	use	nor	enforce	any	usage	controls	or	limits	based	212	
on	licenses,	number	of	executions,	presence	of	temporary	files,	etc.		The	implementation	shall	remain	operable	for	at	213	
least	twelve	months	from	the	submission	date.	214	

2.6. Runtime	behavior	215	

2.6.1. Modes	of	operation	216	
Implementations	shall	not	require	NIST	to	switch	“modes”	of	operation	or	algorithm	parameters.	For	example,	the	use	of	217	
two	different	feature	extractors	must	either	operate	automatically	or	be	split	across	two	separate	library	submissions.	218	

2.6.2. Interactive	behavior,	stdout,	logging	219	
The	implementation	will	be	tested	in	non-interactive	“batch”	mode	(i.e.	without	terminal	support).	Thus,	the	submitted	220	
library	shall:	221	

― Not	use	any	interactive	functions	such	as	graphical	user	interface	(GUI)	calls,	or	any	other	calls	which	require	terminal	222	
interaction	e.g.	reads	from	“standard	input”.	223	

― Run	quietly,	i.e.	it	should	not	write	messages	to	"standard	error"	and	shall	not	write	to	“standard	output”.	224	

― Only	if	requested	by	NIST	for	debugging,	include	a	logging	facility	in	which	debugging	messages	are	written	to	a	log	225	
file	whose	name	includes	the	provider	and	library	identifiers	and	the	process	PID.	226	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	8	of	18	

		

2.6.3. Exception	handling	227	
The	application	should	include	error/exception	handling	so	that	in	the	case	of	a	fatal	error,	the	return	code	is	still	228	
provided	to	the	calling	application.	229	

2.6.4. External	communication	230	
Processes	running	on	NIST	hosts	shall	not	side-effect	the	runtime	environment	in	any	manner,	except	for	memory	231	
allocation	and	release.		Implementations	shall	not	write	any	data	to	external	resource	(e.g.	server,	file,	connection,	or	232	
other	process),	nor	read	from	such,	nor	otherwise	manipulate	it.	If	detected,	NIST	will	take	appropriate	steps,	including	233	
but	not	limited	to,	cessation	of	evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	234	
documentation	of	the	activity	in	published	reports.	235	

2.6.5. Stateless	behavior	236	
All	components	in	this	test	shall	be	stateless,	except	as	noted.			This	applies	to	face	detection,	feature	extraction	and	237	
matching.		Thus,	all	functions	should	give	identical	output,	for	a	given	input,	independent	of	the	runtime	history.			NIST	238	
will	institute	appropriate	tests	to	detect	stateful	behavior.	If	detected,	NIST	will	take	appropriate	steps,	including	but	not	239	
limited	to,	cessation	of	evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	240	
documentation	of	the	activity	in	published	reports.		241	

2.6.6. Single-thread	requirement	and	parallelization	242	
Implementations	must	run	in	single-threaded	mode,	because	NIST	will	parallelize	the	test	by	dividing	the	workload	across	243	
many	cores	and	many	machines.		Implementations	must	ensure	that	there	are	no	issues	with	their	software	being	244	
parallelized	via	the	fork()	function.	245	

2.7. Time	limits	246	
The	elemental	functions	of	the	implementations	shall	execute	under	the	time	constraints	of	Table	3.		These	time	limits	247	
apply	to	the	function	call	invocations	defined	in	section	4.		Assuming	the	times	are	random	variables,	NIST	cannot	regulate	248	
the	maximum	value,	so	the	time	limits	are	90-th	percentiles.		This	means	that	90%	of	all	operations	should	take	less	than	249	
the	identified	duration.		Timing	will	be	estimated	from	at	least	1000	separate	invocations	of	each	elemental	function.	250	

The	time	limits	apply	per	image.	251	

Table	3	–	Processing	time	limits	in	seconds,	per	640	x	480	color	image,	on	a	single	CPU	252	

Function	 1:N	
Template	Generation	 1	
1:N	finalization	(on	gallery	of	1	million	enrolled	templates)	 40000	
1:N	search	for:	

- N	=	1	million	enrolled	templates	
- L	=	100	returned	candidates		

25	

2.8. Template	size	limits	253	
NIST	anticipates	evaluating	performance	with	N	well	in	excess	of	107.		For	implementations	that	represent	a	gallery	in	254	
memory	with	a	linear	data	structure,	the	memory	of	our	machines	implies	a	limit	on	template	sizes.		Thus,	for	a	template	255	
size	B,	the	total	memory	requirement	would	be	about	NB.		NIST	anticipates	running	the	largest	N	values	on	machines	256	
equipped	with	768GB	or	memory.	With	N	=	25	million,	templates	should	not	exceed	32KB.	257	

The	API,	however,	supports	multi-stage	searches	and	read	access	of	the	disk	during	the	1:N	search.	Disk	access	would	258	
likely	be	very	slow.		In	all	cases,	algorithms	shall	conform	to	the	search	duration	limits	given	in	Table	3,	with	linear	scaling.	259	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	9	of	18	

		

3. Data	structures	supporting	the	API	260	

3.1. Requirement	261	
FRVT	1:N	participants	shall	implement	the	relevant	C++	prototyped	interfaces	of	section	4.		C++	was	chosen	in	order	to	262	
make	use	of	some	object-oriented	features.	263	

3.2. File	formats	and	data	structures	264	

3.2.1. Overview	265	

In	this	face	recognition	test,	an	individual	is	represented	by	K	³	1	two-dimensional	facial	images.		Most	images	will	contain	266	
exactly	one	face.		In	a	small	fraction	of	the	images,	other,	smaller,	faces	will	appear	in	the	background.		Algorithms	should	267	
detect	one	foreground	face	(the	biggest	one)	in	each	image	and	produce	one	template.	268	

Table	4	–	Structure	for	a	single	image	269	
C++	code	fragment	 Remarks	
typedef struct Image 	
{ 	
 uint16_t width; Number	of	pixels	horizontally	
 uint16_t height; Number	of	pixels	vertically	
 uint16_t depth; Number	of	bits	per	pixel.	Legal	values	are	8	and	24.	
 std::shared_ptr<uint8_t> data; Managed	pointer	to	raster	scanned	data.	Either	RGB	color	or	

intensity.	
If	image_depth	==	24	this	points	to	3WH	bytes		RGBRGBRGB...	
If	image_depth	==		8	this	points	to		WH	bytes		IIIIIII	

 Label description; Single	description	of	the	image.		The	allowed	values	for	this	field	
are	specified	in	the	enumeration	in	Table	5.	

} Image; 	

An	Image	will	be	accompanied	by	one	of	the	labels	given	below.			Face	recognition	implementations	should	tolerate	270	
Images	of	any	category.		271	

Table	5	–	Labels	describing	categories	of	Images	272	
Label	as	C++	enumeration	 Meaning	
enum class Label { 	
 UNKNOWN=0, Either	the	label	is	unknown	or	unassigned.	
 ISO, Frontal,	intended	to	be	in	conformity	to	ISO/IEC	19794-5:2005.	
 MUGSHOT, From	law	enforcement	booking	processes.	Nominally	frontal.	
 PHOTOJOURNALISM, The	image	might	appear	in	a	news	source	or	magazine.	The	images	are	

typically	taken	by	professional	photographer	and	are	well	exposed	and	
focused	but	exhibit	pose	and	illumination	variations.	

 EXPLOITATION, The	image	is	taken	from	a	child	exploitation	database.		This	imagery	has	
highly	unconstrained	pose	and	illumination,	expression	and	resolution.	

WILD Unconstrained	image,	taken	by	an	amateur	photographer,	exhibiting	wide	
variations	in	pose,	illumination,	and	resolution.	

}; 	

Table	6	–	Structure	for	a	set	of	images	from	a	single	person	273	
C++	code	fragment	 Remarks	
using Multiface = std::vector<Image>; Vector	of	Image	objects	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	10	of	18	
	

3.2.2. Data	structure	for	eye	coordinates	274	
Implementations	shall	return	eye	coordinates	of	each	facial	image.		This	function,	while	not	necessary	for	a	recognition	275	
test,	will	assist	NIST	in	assuring	the	correctness	of	the	test	database.		The	primary	mode	of	use	will	be	for	NIST	to	inspect	276	
images	for	which	eye	coordinates	are	not	returned,	or	differ	between	implementations.	277	

The	eye	coordinates	shall	follow	the	placement	semantics	of	the	ISO/IEC	19794-5:2005	standard	-	the	geometric	278	
midpoints	of	the	endocanthion	and	exocanthion	(see	clause	5.6.4	of	the	ISO	standard).	279	

Sense:	The	label	"left"	refers	to	subject's	left	eye	(and	similarly	for	the	right	eye),	such	that	xright	<	xleft.	280	

Table	7	–	Structure	for	a	pair	of	eye	coordinates	281	
C++	code	fragment		 Remarks	
typedef struct EyePair 	
{ 	
 bool isLeftAssigned; If	the	subject’s	left	eye	coordinates	have	been	computed	and	assigned	

successfully,	this	value	should	be	set	to	true,	otherwise	false.	
 bool isRightAssigned; If	the	subject’s	right	eye	coordinates	have	been	computed	and	assigned	

successfully,	this	value	should	be	set	to	true,	otherwise	false.	
 uint16_t xleft; X	and	Y	coordinate	of	the	center	of	the	subject's	left	eye.		If	the	eye	

coordinate	is	out	of	range	(e.g.	x	<	0	or	x	>=	width),	isLeftAssigned	
should	be	set	to	false.	

 uint16_t yleft;

 uint16_t xright; X	and	Y	coordinate	of	the	center	of	the	subject's	right	eye.		If	the	eye	
coordinate	is	out	of	range	(e.g.	x	<	0	or	x	>=	width),	
isRightAssigned	should	be	set	to	false.	

 uint16_t yright;

} EyePair; 	

3.2.3. Template	role	282	
Labels	describing	the	type/role	of	the	template	to	be	generated	will	be	provided	as	input	to	template	generation.		This	283	
supports	asymmetric	algorithms	where	the	enrollment	and	recognition	templates	may	differ	in	content	and	size.	284	

Table	8	–	Labels	describing	template	role	285	
Label	as	C++	enumeration	 Meaning	
enum class TemplateRole { 	
 Enrollment_1N, Enrollment	template	for	1:N	identification	
 Search_1N Search	template	for	1:N	identification	
}; 	

3.2.4. Data	type	for	similarity	scores	286	
Identification	and	verification	functions	shall	return	a	measure	of	the	similarity	between	the	face	data	contained	in	the	287	
two	templates.		The	datatype	shall	be	an	eight-byte	double	precision	real.		The	legal	range	is	[0,	DBL_MAX],	where	the	288	
DBL_MAX	constant	is	larger	than	practically	needed	and	defined	in	the	<climits>	include	file.	Larger	values	indicate	more	289	
likelihood	that	the	two	samples	are	from	the	same	person.	290	

Providers	are	cautioned	that	algorithms	that	natively	produce	few	unique	values	(e.g.	integers	on	[0,127])	will	be	291	
disadvantaged	by	the	inability	to	set	a	threshold	precisely,	as	might	be	required	to	attain	a	false	positive	identification	292	
rate	of	exactly	0.0001,	for	example.	293	

3.2.5. File	structure	for	enrolled	template	collection	294	
To	support	this	1:N	test,	NIST	will	concatenate	enrollment	templates	into	a	single	large	file,	the	EDB	(for	enrollment	295	
database).		The	EDB	is	a	simple	binary	concatenation	of	proprietary	templates.		There	is	no	header.	There	are	no	296	
delimiters.	The	EDB	may	be	many	gigabytes	in	length.	297	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	11	of	18	
	

This	file	will	be	accompanied	by	a	manifest;	this	is	an	ASCII	text	file	documenting	the	contents	of	the	EDB.		The	manifest	298	
has	the	format	shown	as	an	example	in	Table	9.		If	the	EDB	contains	N	templates,	the	manifest	will	contain	N	lines.		The	299	
fields	are	space	(ASCII	decimal	32)	delimited.		There	are	three	fields.		Strictly	speaking,	the	third	column	is	redundant.	300	

Important:	If	a	call	to	the	template	generation	function	fails,	or	does	not	return	a	template,	NIST	will	include	the	Template	301	
ID	in	the	manifest	with	size	0.		Implementations	must	handle	this	appropriately.	302	

Table	9	–	Enrollment	dataset	template	manifest	303	
Field	name	 Template	ID	 Template	Length	 Position	of	first	byte	in	EDB	
Datatype	required	 std::string	 uint64_t	 uint64_t	
Example	lines	of	a	manifest	file	appear	
to	the	right.	Lines	1,	2,	3	and	N	appear.	

90201744	 1024	 0	
person01	 1536	 1024	
7456433	 512	 2560	
...	 	 	
subject12	 1024	 307200000	

	304	
The	EDB	scheme	avoids	the	file	system	overhead	associated	with	storing	millions	of	small	individual	files.	305	

3.2.6. Gallery	Type	306	

	307	
Figure	1	–	Illustration	of	consolidated	versus	unconsolidated	enrollment	database5	308	

Figure	1	illustrates	two	types	of	galleries:	309	

― Consolidated:	The	database	is	formed	by	enrolling	all	images	of	a	subject	under	a	common	identity	label.		The	result	310	
is	a	gallery	with	N	identities	and	N	templates.	This	type	of	gallery	presents	us	with	the	cleanest	experimental	design,	311	
“one	needle	in	a	haystack”	scenario.	It	allows	algorithms	to	perform	image	and	feature	level	fusion.	Operationally	it	312	
requires	high	integrity	biographical	information	to	maintain.			313	

― Unconsolidated:	The	database	is	formed	by	enrolling	photographs	without	regard	to	whether	the	subject	already	has	314	
already	been	enrolled	or	not.		Under	this	scheme,	different	images	of	the	same	person	can	exist	in	the	gallery	under	315	
different	subject	identifiers,	that	is,	there	are	N	identities,	and	M	>	N	database	entries.		316	

During	gallery	finalization,	algorithms	will	be	provided	with	an	enumerated	label	from	Table	10	which	specifies	the	type	of	317	
gallery	being	processed.	318	

																																																																				
5	The	face	images	contained	in	this	figure	are	from	the	publicly	available	Special	Database	32	-	Multiple	Encounter	Dataset	(MEDS).		
https://www.nist.gov/itl/iad/image-group/special-database-32-multiple-encounter-dataset-meds				
	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	12	of	18	
	

Table	10	–	Labels	describing	gallery	composition	319	
Label	as	C++	enumeration	 Meaning	
enum class GalleryType { 	
 Consolidated, Consolidated,	subject-based	enrollment	
 Unconsolidated Unconsolidated,	event-based	or	photo-based	enrollment	
}; 	

3.2.7. Data	structure	for	result	of	an	identification	search	320	
All	identification	searches	shall	return	a	candidate	list	of	a	NIST-specified	length.		The	list	shall	be	sorted	with	the	most	321	
similar	matching	entries	list	first	with	lowest	rank.		The	data	structure	shall	be	that	of	Table	11.	322	

Table	11	–	Structure	for	a	candidate	323	
	 C++	code	fragment	 Remarks	
1. typedef struct Candidate 	
2. { 	
3. bool isAssigned; If	the	candidate	computation	succeeded,	this	value	is	set	to	true.		False	otherwise.	

If	value	is	set	to	false,	similarityScore	and	templateId	will	be	ignored	entirely.	
4. std::string templateId; The	Template	ID	from	the	enrollment	database	manifest	defined	in	clause	3.2.5.	
5. double similarityScore; Measure	of	similarity	between	the	identification	template	and	the	enrolled	candidate.	

Higher	scores	mean	more	likelihood	that	the	samples	are	of	the	same	person.	

An	algorithm	is	free	to	assign	any	value	[0,	DBL_MAX]	to	a	candidate.		The	distribution	of	
values	will	have	an	impact	on	the	false-negative	and	false-positive	identification	rates.	

6. } Candidate; 	

3.2.8. Data	structure	for	return	value	of	API	function	calls	324	

Table	12	–	Enumeration	of	return	codes	325	
Return	code	as	C++	enumeration	 Meaning	
enum class ReturnCode { 	
 Success=0, Success	
 ConfigError, Error	reading	configuration	files	
 RefuseInput, Elective	refusal	to	process	the	input,	e.g.	because	cannot	handle	greyscale	
 ExtractError, Involuntary	failure	to	process	the	image,	e.g.	after	catching	exception		
 ParseError, Cannot	parse	the	input	data	
 TemplateCreationError, Elective	refusal	to	produce	a	“non-blank”	template	(e.g.	insufficient	pixels	

between	the	eyes)	
 VerifTemplateError, For	matching,	either	or	both	of	the	input	templates	were	result	of	failed	

feature	extraction	
 FaceDetectionError, Unable	to	detect	a	face	in	the	image	
 NumDataError, The	implementation	cannot	support	the	number	of	images	
 TemplateFormatError, Template	file	is	in	an	incorrect	format	or	defective	
 EnrollDirError, An	operation	on	the	enrollment	directory	failed	(e.g.	permission,	space)	
 InputLocationError, Cannot	locate	the	input	data	–	the	input	files	or	names	seem	incorrect	
 MemoryError, Memory	allocation	failed	(e.g.	out	of	memory)	
 NotImplemented, Function	is	not	implemented	
 VendorError, Vendor-defined	failure.		Vendor	errors	shall	return	this	error	code	and	

document	the	specific	failure	in	the	ReturnStatus.info	string	from	Table	13.	
}; 	

	326	
	327	
	328	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	13	of	18	
	

Table	13	–	ReturnStatus	structure	329	
C++	code	fragment	 Meaning	
struct ReturnStatus { 	
 ReturnCode code; Return	Code	
 std::string info; Optional	information	string	
 // constructors 	
}; 	

	330	

4. API	specification	331	

Please	note	that	included	with	the	FRVT	1:N	validation	package	(available	at	https://github.com/usnistgov/frvt)	is	a	“null”	332	
implementation	of	this	API.		The	null	implementation	has	no	real	functionality	but	demonstrates	mechanically	how	one	333	
could	go	about	implementing	this	API.	334	

4.1. Namespace	335	
All	data	structures	and	API	interfaces/function	calls	will	be	declared	in	the	FRVT	namespace.	336	

4.2. Overview	337	
The	1:N	identification	application	proceeds	in	three	phases:	enrollment,	finalization	and	identification.		The	identification	338	
phase	includes	separate	probe	feature	extraction	and	search	stages.	339	

The	design	reflects	the	following	testing	objectives	for	1:N	implementations.	340	

- support	distributed	enrollment	on	multiple	machines,	with	multiple	processes	running	in	parallel	
- allow	recovery	after	a	fatal	exception,	and	measure	the	number	of	occurrences	
- allow	NIST	to	copy	enrollment	data	onto	many	machines	to	support	parallel	testing	
- respect	the	black-box	nature	of	biometric	templates	
- extend	complete	freedom	to	the	provider	to	use	arbitrary	algorithms	
- support	measurement	of	duration	of	core	function	calls	
- support	measurement	of	template	size	
- support	measurement	of	template	insertion	and	removal	times	into	an	enrollment	database	

Table	14	–	Procedural	overview	of	the	1:N	test	341	

Ph
as
e	 #	 Name	 Description	 Performance	Metrics	to	be	

reported	by	NIST	

En
ro
llm

en
t	

E1	 Initialization	 initializeTemplateCreation(TemplateRole=Enrollment_1N)	

Give	the	implementation	the	name	of	a	directory	where	any	provider-supplied	
configuration	data	will	have	been	placed	by	NIST.		This	location	will	otherwise	be	empty.	

The	implementation	is	permitted	read-only	access	to	the	configuration	directory.	

	

E2	 Parallel	Enrollment	 createTemplate(TemplateRole=Enrollment_1N)	

For	each	of	N	individuals,	pass	K	=	1	image	of	the	individual	to	the	implementation	for	
conversion	to	a	template.		The	implementation	will	return	a	template	to	the	calling	
application.	

NIST's	calling	application	will	be	responsible	for	storing	all	templates	as	binary	files.		
These	will	not	be	available	to	the	implementation	during	this	enrollment	phase.	

Multiple	instances	of	the	calling	application	may	run	simultaneously	or	sequentially.		
These	may	be	executing	on	different	computers.	

Statistics	of	the	times	
needed	to	enroll	an	
individual.	

Statistics	of	the	sizes	of	
created	templates.	

The	incidence	of	failed	
template	creations.	

E3	 Finalization	 finalizeEnrollment()	

Permanently	finalize	the	enrollment	directory.		This	supports,	for	example,	adaptation	

Size	of	the	enrollment	
database	as	a	function	of	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	14	of	18	
	

of	the	image-processing	functions,	adaptation	of	the	representation,	writing	of	a	
manifest,	indexing,	and	computation	of	statistical	information	over	the	enrollment	
dataset.	

The	implementation	is	permitted	read-write-delete	access	to	the	enrollment	directory	
during	this	phase.	

population	size	N.	

Duration	of	this	operation.		
The	time	needed	to	
execute	this	function	shall	
be	reported	with	the	
preceding	enrollment	
times.	

Pr
ob

e	
Te
m
pl
at
e	
Cr
ea
tio

n	

S1	 Initialization	 initializeTemplateCreation(TemplateRole=Search_1N)	

Give	the	implementation	the	name	of	a	directory	where	any	provider-supplied	
configuration	data	will	have	been	placed	by	NIST.		This	location	will	otherwise	be	empty.	

The	implementation	is	permitted	read-only	access	to	the	configuration	directory.	

Statistics	of	the	time	
needed	for	this	operation.	

	

S2	 Template	
preparation	

createTemplate(TemplateRole=Search_1N)	

For	each	probe,	create	a	template	from	K	>=	1	image.		

The	result	of	this	step	is	a	search	template.	
	
Multiple	instances	of	the	calling	application	may	run	simultaneously	or	sequentially.		
These	may	be	executing	on	different	computers.			

Statistics	of	the	time	
needed	for	this	operation.	

Statistics	of	the	size	of	the	
search	template.	

Se
ar
ch
	

S3	 Initialization	 initializeIdentification()	

Tell	the	implementation	the	location	of	an	enrollment	directory.		The	implementation	
should	read	all	or	some	of	the	enrolled	data	into	main	memory,	so	that	searches	can	
commence.	

The	implementation	is	permitted	read-only	access	to	the	enrollment	directory	during	
this	phase.	

Statistics	of	the	time	
needed	for	this	operation.	

	

S4	 Search	 identifyTemplate	()	

A	template	is	searched	against	the	enrollment	database.			

Developers	shall	not	attempt	to	improve	the	duration	of	the	identifyTemplate()	function	
by	offloading	any	of	its	processing	into	the	createTemplate()	function.				

Statistics	of	the	time	
needed	for	this	operation.	

Accuracy	metrics	-	Type	I	+	
II	error	rates.	

Failure	rates.	

Ga
lle
ry
	In

se
rt
	a
nd

	R
em

ov
e	

G1	 Initialization	 initializeIdentification	()	

Tell	the	implementation	the	location	of	an	enrollment	directory.		The	implementation	
should	read	all	or	some	of	the	enrolled	data	into	main	memory,	so	that	searches	can	
commence.	

The	implementation	is	permitted	read-only	access	to	the	enrollment	directory	during	
this	phase.	

Statistics	of	the	duration	of	
the	operation.	

	

G2	 Template	
insertion/removal	
into/from	gallery	

galleryInsertID	()	/	galleryDeleteID()	

galleryInsertID()	is	executed	one	or	more	times	to	insert	a	template	created	with	
createTemplate(TemplateRole=Enrollment_1N)	into	the	gallery.	

galleryDeleteID()	is	executed	one	or	more	times	to	remove	a	template	from	the	gallery.	

Statistics	of	the	duration	of	
the	operation.	

G3	 Search	 identifyTemplate()	

A	template	is	searched	against	the	enrollment	database.			

Statistics	of	the	duration	of	
the	operation.	

Accuracy	metrics	-	Type	I	+	
II	error	rates.	

	342	

	343	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	15	of	18	
	

4.3. API	344	

4.3.1. Interface	345	
The	software	under	test	must	implement	the	interface	IdentInterface	by	subclassing	this	class	and	implementing	346	
each	method	specified	therein.	347	

	 C++	code	fragment		 Remarks	
1. Class IdentInterface 	
2. {

public:
	

3.	 static std::shared_ptr<IdentInterface> getImplementation(); Factory	method	to	return	a	managed	pointer	
to	the	IdentInterface	object.		This	
function	is	implemented	by	the	submitted	
library	and	must	return	a	managed	pointer	to	
the	IdentInterface	object.	

4. // Other functions to implement 	
5. }; 	

There	is	one	class	(static)	method	declared	in	IdentInterface.	getImplementation()	which	must	also	be	348	
implemented.	This	method	returns	a	shared	pointer	to	the	object	of	the	interface	type,	an	instantiation	of	the	349	
implementation	class.	A	typical	implementation	of	this	method	is	also	shown	below	as	an	example.	350	

	 C++	code	fragment		 Remarks	
 #include “frvt1N.h”

using namespace FRVT;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<IdentInterface>
IdentInterface::getImplementation()
{
 return std::make_shared<NullImpl>();
}
// Other implemented functions

	

4.3.2. Initialization	of	template	creation	351	
Before	any	feature	extraction/template	creation	calls	are	made,	the	NIST	test	harness	will	call	the	initialization	function	of	352	
Table	15.		This	function	will	be	called	BEFORE	any	calls	to	fork()	are	made.	353	

Table	15	–	Template	creation	initialization		354	

Prototype	 ReturnStatus	initializeTemplateCreation(
const	std::string	&configDir,	 Input	
TemplateRole	role);	 Input	

Description	
	

This	function	initializes	the	implementation	under	test	and	sets	all	needed	parameters	in	preparation	for	template	
creation.		This	function	will	be	called	N=1	times	by	the	NIST	application,	prior	to	parallelizing	M	>=	1	calls	to	
createTemplate()	via	fork().

This	function	will	be	called	from	a	single	process/thread.	

Input	Parameters	 configDir	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.	

role	 A	value	from	the	TemplateRole	enumeration	that	indicates	the	intended	usage	of	the	
template	to	be	generated.		In	this	case,	either	Enrollment_1N	or	Search_1N.	

Output	
Parameters	

None	 	

Return	Value	 See	Table	12	for	all	valid	return	code	values.	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	16	of	18	
	

4.3.3. Template	Creation	356	
A	Multiface	is	converted	to	a	single	template	using	the	function	of	Table	16.	357	

Table	16	–	Template	Creation/Feature	Extraction	358	

Prototypes	 ReturnStatus	createTemplate(
const	Multiface	&faces,	 Input	
TemplateRole	role,	 Input	
std::vector<uint8_t>	&templ,	
std::vector<EyePair>	&eyeCoordinates);	

Output	
Output	

Description	 Takes	a	Multiface	and	outputs	a	proprietary	template	and	associated	eye	coordinates.		The	vector	to	store	the	
template	will	be	initially	empty,	and	it	is	up	to	the	implementation	to	populate	it	with	the	appropriate	data.	

Note:	In	the	event	that	more	than	one	face	is	detected	in	an	image,	features	should	be	extracted	from	the	foreground	
face,	that	is,	the	largest	face	in	the	image.	

For	enrollment	templates	(TemplateRole=Enrollment_1N):	If	the	function	executes	correctly	(i.e.	returns	a	successful	
return	code),	the	template	will	be	enrolled	into	a	gallery.		The	NIST	calling	application	may	store	the	resulting	
template,	concatenate	many	templates,	and	pass	the	result	to	the	enrollment	finalization	function	(see	section	4.3.4).		
The	resulting	template	may	also	be	inserted	immediately	into	previously	finalized	gallery.		When	the	implementation	
fails	to	produce	a	template	(i.e.	returns	a	non-successful	return	code),	it	shall	still	return	a	blank	template	(which	can	
be	zero	bytes	in	length).	The	template	will	be	included	in	the	enrollment	database/manifest	like	all	other	enrollment	
templates,	but	is	not	expected	to	contain	any	feature	information.		

IMPORTANT:		NIST's	application	writes	the	template	to	disk.		Any	data	needed	during	subsequent	searches	should	be	
included	in	the	template,	or	created	from	the	templates	during	the	enrollment	finalization	function	of	section	4.3.4.	

For	identification/probe	templates	(TemplateRole=Search_1N):	The	NIST	calling	application	may	commit	the	template	
to	permanent	storage,	or	may	keep	it	only	in	memory	(the	developer	implementation	does	not	need	to	know).		If	the	
function	returns	a	non-successful	return	status,	the	output	template	will	not	be	used	in	subsequent	search	operations.			

Input	
Parameters	

face	 Input	Multiface	
role	 Label	describing	the	type/role	of	the	template	to	be	generated.		In	this	case,	it	will	either	be	

Enrollment_1N	or	Search_1N.	
Output	
Parameters	

templ	 The	output	template.		The	format	is	entirely	unregulated.		This	will	be	an	empty	vector	when	
passed	into	the	function,	and	the	implementation	can	resize	and	populate	it	with	the	appropriate	
data.	

eyeCoordinates	 The	function	shall	return	the	estimated	eye	centers	for	the	input	face	image.	
Return	Value	 See	Table	12	for	all	valid	return	code	values.	

4.3.4. Finalization	359	
	After	all	templates	have	been	created,	the	function	of	Table	17	will	be	called.		This	freezes	the	enrollment	data.		After	this	360	
call	the	enrollment	dataset	will	be	forever	read-only.			361	

The	function	allows	the	implementation	to	conduct,	for	example,	statistical	processing	of	the	feature	data,	indexing	and	362	
data	re-organization.		The	function	may	alter	the	file	structure.		It	may	increase	or	decrease	the	size	of	the	stored	data.		363	
No	output	is	expected	from	this	function,	except	a	return	code.			364	

Implementations	shall	not	move	the	input	data.			Implementations	shall	not	point	to	the	input	data.		Implementations	365	
should	not	assume	the	input	data	will	be	readable	after	the	call.		Implementations	must,	at	a	minimum,	copy	the	input	366	
data	or	otherwise	extract	what	is	needed	for	search.	367	

Table	17	–	Enrollment	finalization	368	

Prototypes	 ReturnStatus	finalizeEnrollment(
const	std::string	&enrollmentDir,	 Input	
const	std::string	&edbName,	 Input	
const	std::string	&edbManifestName,	 Input	
GalleryType	galleryType);	 Input	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	17	of	18	
	

Description	 This	function	takes	the	name	of	the	top-level	directory	where	the	enrollment	database	(EDB)	and	its	manifest	have	
been	stored.			These	are	described	in	section	3.2.5.		The	enrollment	directory	permissions	will	be	read	+	write.			

The	function	supports	post-enrollment,	developer-optional,	book-keeping	operations,	statistical	processing	and	data	
re-ordering	for	fast	in-memory	searching.			The	function	will	generally	be	called	in	a	separate	process	after	all	the	
enrollment	processes	are	complete.	

This	function	should	be	tolerant	of	being	called	two	or	more	times.		Second	and	third	invocations	should	probably	do	
nothing.	

This	function	will	be	called	from	a	single	process/thread.	

Input	
Parameters	

enrollmentDir	 The	top-level	directory	in	which	enrollment	data	was	placed.	This	variable	allows	an	
implementation	to	locate	any	private	initialization	data	it	elected	to	place	in	the	directory.	

edbName	 The	name	of	a	single	file	containing	concatenated	templates,	i.e.	the	EDB	of	section	3.2.5.	
While	the	file	will	have	read-write-delete	permission,	the	implementation	should	only	alter	
the	file	if	it	preserves	the	necessary	content,	in	other	files	for	example.	
The	file	may	be	opened	directly.		It	is	not	necessary	to	prepend	a	directory	name.		This	is	a	
NIST-provided	input	–	implementers	shall	not	internally	hard-code	or	assume	any	values.	

edbManifestName	 The	name	of	a	single	file	containing	the	EDB	manifest	of	section	3.2.5.	
The	file	may	be	opened	directly.		It	is	not	necessary	to	prepend	a	directory	name.		This	is	a	
NIST-provided	input	–	implementers	shall	not	internally	hard-code	or	assume	any	values.	

galleryType	 A	label	from	Table	10	specifying	the	composition	of	the	gallery.	

Output	
Parameters	

None	 	

Return	Value	 See	Table	12	for	all	valid	return	code	values.	

369	

4.3.5. Search	Initialization	370	
The	function	of	Table	18	will	be	called	once	prior	to	one	or	more	calls	of	the	searching	function	of	Table	19.		The	function	371	
might	set	static	internal	variables	so	that	the	enrollment	database	is	available	to	the	subsequent	identification	searches.		372	
This	function	will	be	called	BEFORE	any	calls	to	fork()	are	made.	373	

Table	18	–	Identification	initialization	374	

Prototype	 ReturnStatus	initializeIdentification(
const	string	&configDir,	 Input	
const	string	&enrollmentDir);	 Input	

Description	 This	function	reads	whatever	content	is	present	in	the	enrollmentDir,	for	example	a	manifest	placed	there	by	the	
finalizeEnrollment()	function.	
This	function	will	be	called	from	a	single	process/thread.	

Input	Parameters	 configDir	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.	

enrollmentDir	 The	read-only	top-level	directory	in	which	enrollment	data	was	placed.	
Return	Value	 See	Table	12	for	all	valid	return	code	values.	

4.3.6. Search	375	
The	function	of	Table	19	compares	a	proprietary	identification	template	against	the	enrollment	data	and	returns	a	376	
candidate	list.	377	

Table	19	–	Identification	search	378	

Prototype	 ReturnStatus	identifyTemplate	(
const	std::vector<uint8_t>	&idTemplate,	 Input	
const	uint32_t	candidateListLength,	 Input	
std::vector<Candidate>	&candidateList,	 Output	
bool	&decision);	 Output	

Face	Recognition	Vendor	Test	1:N	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	18	of	18	
	

Description	
	

This	function	searches	a	template	against	the	enrollment	set,	and	outputs	a	list	of	candidates.		The	candidateList	
vector	will	initially	be	empty,	and	the	implementation	shall	populate	the	vector	with	candidateListLength	entries.	

Input	Parameters	 idTemplate	 A	template	from	createTemplate(TemplateRole=Search_1N)	-	If	the	value	returned	
by	that	function	was	non-zero	the	contents	of	idTemplate	will	not	be	used	and	this	
function	(i.e.	identifyTemplate)	will	not	be	called.	

candidateListLength	 The	number	of	candidates	the	search	should	return	
Output	
Parameters	

candidateList	 A	vector	containing	"candidateListLength	"	objects	of	candidates.	The	datatype	is	
defined	in	section	3.2.6.		Each	candidate	shall	be	populated	by	the	
implementation.		The	candidates	shall	appear	in	descending	order	of	similarity	
score	-	i.e.	most	similar	entries	appear	first.	

decision	 A	best	guess	at	whether	there	is	a	mate	within	the	enrollment	database.		If	there	
was	a	mate	found,	this	value	should	be	set	to	true,	Otherwise,	false.	Many	such	
decisions	allow	a	single	point	to	be	plotted	alongside	a	DET.	

Return	Value	 See	Table	12	for	all	valid	return	code	values.	
	379	

NOTE:	 Ordinarily	the	calling	application	will	set	the	input	candidate	list	length	to	operationally	typical	values,	say	0	£	L		£	380	
200,	and	L	<<	N.		We	will	measure	the	dependence	of	search	duration	on	L.	381	

4.3.7. Gallery	insertion	and	removal	of	templates	382	
The	functions	of	this	section	insert	a	new	template	into,	and	removes	an	existing	template	from,	a	finalized	gallery,	383	
respectively.	384	

Table	20	–	Insertion	of	template	into	a	gallery	385	

Prototype	 ReturnStatus	galleryInsertID(
const	std::vector<uint8_t>	&templ,	 Input	
const	std::string	&id);	 Input	

Description	
	

This	function	inserts	a	template	with	an	associated	id	into	an	existing	finalized	gallery.		Invocation	of	this	function	
will	always	be	preceded	by	a	call	to	initializeIdentification(),	which	will	provide	the	location	of	the	finalized	gallery	
to	be	loaded	into	memory.		One	or	more	calls	to	identifyTemplate()	may	be	made	after	calling	this	function.	

The	template	ID	will	not	exist	in	the	database	already,	so	a	1:N	duplicate	search	is	not	necessary.	

This	function	will	be	called	from	a	single	process/thread.	

Input	Parameters	 templ	 A	template	created	via	createTemplate(TemplateRole=Enrollment_1N)	
id	 An	identifier	associated	with	the	enrollment	template	

Return	Value	 See	Table	12	for	all	valid	return	code	values.	

Table	21	–	Removal	of	template	from	a	gallery	386	

Prototype	 ReturnStatus	galleryDeleteID(
const	std::string	&id);	 Input	

Description	
	

This	function	deletes	an	existing	template	from	a	finalized	gallery.		Invocation	of	this	function	will	always	be	
preceded	by	a	call	to	initializeIdentification(),	which	will	provide	the	location	of	the	finalized	gallery.		One	or	more	
calls	to	identifyTemplate	may	be	made	before	and	after	calling	this	function.			

The	template	ID	will	exist	in	the	database.	

This	function	will	be	called	from	a	single	process/thread.	

Input	Parameters	 id	 An	identifier	associated	with	the	enrollment	template	
Return	Value	 See	Table	12	for	all	valid	return	code	values.	
	387	

